MP^*2 2018/2019 Feuille d'exercices 20

Algèbre bilinéaire (I)

Exercice 1: Soit E un espace euclidien de dimension n et (e_1, \ldots, e_n) une base orthonormée de E. Soit f un projecteur de rang 1. Montrer que f est un projecteur orthogonal si et seulement si

$$\sum_{i=1}^{n} ||f(e_i)||^2 = 1.$$

Exercice 2: Soit (e_1, \ldots, e_n) une famille liée de vecteurs unitaires deux à deux distincts d'un espace préhilbertien telle qu'il existe un réel α vérifiant

$$\forall (i, j) \ i \neq j \quad (e_i|e_j) = \alpha$$

- 1) Que vaut α ?
- 2) Quel est le rang de la famille?

Exercice 3: Soit E un espace vectoriel préhilbertien dont ϕ est le produit scalaire. Soit $A = (e_1, \dots, e_n)$ une famille d'éléments de E. Montrer que A et la matrice

$$G = (\phi(e_i, e_j))_{1 \le i, j \le n}$$

ont même rang.

Exercice 4: Si p est une projecteur de l'espace euclidien E, alors p est un projecteur orthogonal si et seulement si $\forall x \in E \ \|p(x)\| \le \|x\|$.

Exercice 5: Soit (e_0, e_1, \ldots, e_n) une famille de vecteurs d'un espace euclidien E. On suppose que pour tout (i, j) avec $i \neq j$ on a $(e_i|e_j) < 0$. Montrer que (e_1, \ldots, e_n) est libre.

Exercice 6: Soit $E = \mathcal{C}^2([0,1], \mathbb{R}$. pour f et g dans E on pose

$$\phi(f,g) = \int_0^1 (f(t)g(t) + f'(t)g'(t)) dt$$

- 1) Montrer que ϕ définit un produit scalaire sur E.
- 2) Soit $F = \{f \in E; f(0) = f(1) = 0\}$ et $G = \{g \in E; g'' = g\}$. Montrer que F et G sont supplémentaires? Qu'est-ce que la projection orthogonale d'un élément f de E sur G?
- 3) Calculer

$$\inf_{g \in G} \int_0^1 ((\sin(\pi x) - g(x))^2 + (\pi \cos(\pi x) - g'(x))^2) dx$$

Exercice 7: Soit $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ trois vecteurs unitaires du plan euclidien tels qu'aucun demi-plan ne contienne les trois. Montrer

$$\|\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w}\| \le 1$$

Exercice 8: On munit \mathbb{R}^n du produit scalaire usuel.

- 1) Si V est dans \mathbb{R}^n , de norme 1, quelle est la matrice du projecteur orthogonal sur $\mathbb{R}V$?
- 2) On considère une matrice par blocs $M = (M_{i,j})_{1 \leq i,j \leq q} \in M_{pq}(\mathbb{R}), M_{i,j} \in M_p(\mathbb{R}). \Psi = (\Phi_i)_{1 \leq i \leq q} \in \mathbb{R}^{pq}$ est un vecteur unitaire de \mathbb{R}^{pq} . Condition pour que M soit la matrice du projecteur orthogonal sur Ψ ?