Réduction des endomorphismes II

Exercice 1: Soit M(a,b) la matrice de $M_n(\mathbb{R})$ dont les coefficients diagonaux sont égaux à a et les autres à b.

- 1) Déterminer le polynôme caractéristique de M(a, b).
- 2) Montrer que M(a,b) est diagonalisable et déterminer ses valeurs propres et ses sous-espaces propres.
- 3) Calculer $M(a,b)^p$.
- 4) Calculer $\exp M(a,b)$.

Exercice 2: A quelles conditions la matrice A suivante, à coefficients réels est-elle diagonalisable.

$$A = \begin{pmatrix} a_{n-1} & a_{n-2} & \cdots & \cdots & a_0 \\ 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} .$$

Exercice 3: Si dim E = n et si f possède n valeurs propres distinctes et si $g \circ f = f \circ g$ alors g est diagonalisable.

Exercice 4: Condition sur (a, b, c) pour que la matrice A, à coefficients réels ou complexes soit diagonalisable, où :

$$A = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & -1 \end{pmatrix}.$$

Exercice 5: Soit U une matrice de $M_n(\mathbb{C})$ et $V = \begin{pmatrix} 0 & I_n \\ U & 0 \end{pmatrix}$. Comparer les sous-espaces propres de U et ceux de V et trouver une condition nécessaire et suffisante sur U pour que V soit diagonalisable.

Exercice 6: Soit f un endomorphisme de E, on dit que f est cyclique s'il existe un vecteur x tel que le plus petit espace vectoriel contenant x et stable par f soit E. Montrer que si le polynôme caractéristique de f est scindé à racines simples alors f est cyclique.

Exercice 7: Soit f un endomorphisme de E, on dit que f est cyclique s'il existe un vecteur x tel que le plus petit espace vectoriel contenant x et stable par f soit E. Montrer que si le polynôme caractéristique de f est scindé à racines simples alors f est cyclique.

Exercice 8: Déterminer les matrices B telles que $B^2 = A$ où $A = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 9 & 0 \\ 8 & 2 & 4 \end{pmatrix}$.

Exercice 9: Soit $E = \mathbb{R}_3[X]$, $A = X^4 - 1$ et $B = X^4 - X$. On considère l'endomorphisme de E qui à P associe le reste de la division euclidienne de AP par B. Déterminer ses valeurs propres et ses sous-espaces propres.

Exercice 10: Soit u un endomorphisme de E. On définit Φ_u sur L(E) par $\Phi_u(v) = uv$.

- 1) Montrer que si u est diagonalisable, Φ_u est diagonalisable.
- 2) Etablir la réciproque.
- 3) En admettant que les résultats précédents sont valables pour $\Psi_u: v \mapsto vu$, montrer que pour tout couple (u, v) d'endomorphismes diagonalisables de E l'endomorphisme $\Theta_{u,v}: w \mapsto uw wv$ est diagonalisable.

Exercice 11: Quelle sont les matrices de $M_n(\mathbb{C})$ vérifiant $\operatorname{tr}(A^j) = n$, pour tout j de $\{1, \ldots, n\}$?

Exercice 12: Montrer que

$$B = \begin{pmatrix} -A & -3A \\ 2A & 4A \end{pmatrix}$$

est diagonalisable si et seulement si A est diagonalisable.

Exercice 13: Diagonaliser la matrice $A_n = (a_{i,j})$ de $M_n(\mathbb{R})$ telle que pour tout i $m_{i,i} = 2$, $m_{i+1,i} = 1$ et $m_{i_1,i} = 1$ les autres coefficients étant nuls.

Indication : Si P_n est le polynôme caractéristique de A_n obtenir une relation de récurrence entre P_n , P_{n-1} et P_{n-2} . Calculer ensuite $P_n(0)$, $P_n(4)$, $P_n(2-2\operatorname{ch} x)$ (x>0) et $P_n(2-2\operatorname{cos}\theta)$ $(\theta\in]0,\pi[)$ pour en déduire les valeurs propres de A_n . Déterminer ensuite les vecteurs propres associés à chacune des valeurs propres.