Centrale 2010. Option MP. Mathématiques I.

Corrigé pour serveur UPS par JL. Lamard (jean-louis.lamard@prepas.org)

	Partie I. Preliminaires geometriques.
A.1)	Solution "géométrique":
ŕ	\widehat{abc} est par définition l'enveloppe convexe de $\{A,B,C\}$ c'est à dire le "triangle plein" au sens géométrique (éventuellement dégénéré en un segment) ABC avec A (resp. B,C) les points d'affixe a (resp. b,c). Si on désigne par I,J,K les points d'affixe respectives $1,i$ et -1 alors τ_0 est le triangle KOJ,τ_1 le triangle IOJ et τ le triangle KJI donc on a bien $\tau=\tau_0\cup\tau_1$. \square Solution "calculatoire" : Soit $(\alpha,\beta,\gamma)\in K$.
	On a α . $(-1) + \beta$. $0 + \gamma$. $i = (\alpha + \frac{\beta}{2})$. $(-1) + \frac{\beta}{2}$. $1 + \gamma$. i et $(\alpha + \frac{\beta}{2}, \frac{\beta}{2}, \gamma) \in K$ donc $\tau_0 \subset \tau$.
	On prouve de même que $\tau_1 \subset \tau$ et donc que $\tau_0 \cup \tau_1 \subset \tau$. Réciproquement soit $z = \alpha.(-1) + \beta.1 + \gamma.i \in \tau$. Si $\alpha \geqslant \beta$ on a $z = (\alpha - \beta).(-1) + 2\beta.0 + \gamma.i$ ce qui prouve que $z \in \tau_0$ et sinon $z = (\beta - \alpha).1 + 2\alpha.0 + \gamma.i$ donc $z \in \tau_1$. En conclusion $\tau = \tau_0 \cup \tau_1$. \square
A.2)	Cf solution "géométrique" ci-dessus.
A.3.a	a) Notons s la réflexion définie par l'énoncé et s' celle par rapport à la parallèle à l'axe $x'x$ passant par a' également. On a alors $s \circ s' = r$ où r est la rotation de centre a et d'angle 2θ donc $s = r \circ s'$. Or on a clairement $r(z) - a = e^{2i\theta}(z-a)$ et $s'(z) - a = \overline{z-a}$ d'ou $z' - a = s(z) - a = e^{2i\theta}(s'(z)-a) = e^{2i\theta}\overline{(z-a)}$. \square
A.3. ł	c)Clairement $z' - a = \rho(z - a)$
A.3.c	e) • On constate immédiatement que -1 est point fixe (unique par un calcul immédiat) de ϕ_0 et que en notant $\phi_0(z) = z'$ on a $z' + 1 = \frac{1+i}{2}(\overline{z}+1) = \frac{1}{\sqrt{2}}e^{i\pi/4}\overline{(z+1)}$.
	Donc, daprès les deux questions précédentes, $\phi_0 = s_0 \circ h_0 = h_0 \circ s_0$ avec h_0 l'homothétie de centre -1 et de rapport $\frac{1}{\sqrt{2}}$ et s_0 la réflexion par rapport à la droite passant par -1 et d'angle polaire $\frac{\pi}{8}$.
	Unicité : soit une telle décomposition $h' \circ s'$. Comme -1 est l'unique point fixe de ϕ_0 on a que -1 est le centre de h' et donc (avec des notations claires) $z' + 1 = \rho e^{2i\theta} \overline{(z+1)} = \frac{1}{\sqrt{2}} e^{i\pi/4} \overline{(z+1)}$ pour tout z donc $\rho e^{2i\theta} = \frac{1}{\sqrt{2}} e^{i\pi/4} \overline{(z+1)}$
	donc (<u>puisque</u> $\rho > 0$) $\rho = \frac{1}{\sqrt{2}}$ et $\theta = \frac{\pi}{8}$ ce qui prouve l'unicité de la décomposition. \square
	• De même 1 est l'unique point fixe de ϕ_1 qui se traduit par $z'-1=\frac{1-i}{2}\overline{(z-1)}$ donc $\phi_1=h_1\circ s_1=s_1\circ h_1$
	avec h_1 l'homothétie de centre 1 et de rapport $\frac{1}{\sqrt{2}}$ et s_1 la réflexion par rapport à la droite passant 1 et d'angle
	polaire $-\frac{\pi}{8}$. L'unicité de cette décomposition se prouve comme précédemment. \square
A.4)	Si f est une application affine, comme elle conserve le barycentre, on a que l'image du triangle plein \widehat{abc} est le triangle plein $\widehat{a'b'c'}$ avec $a'=f(a),\ldots$ En particulier avec ϕ_0 et ϕ_1 et ainsi on constate que $\phi_0(\tau)=\tau_0$ et $\phi_1(\tau)=\tau_1$. \square
В.1.а	a) Soit f l'application de \mathbb{R}^3 dans \mathbb{R} définie par $f(\alpha, \beta, \gamma) = \alpha + \beta + \gamma$. Elle est continue de sorte que $f^{-1}\{1\}$ est un fermé de \mathbb{R}^3 . Donc $K = f^{-1}\{1\} \cap [0,1]^3$ également en tant qu'intersection de deux fermés. En outre K est borné car inclus dans $[0,1]^3$ donc compact en tant que fermé borné en dimension finie. \square
B.1.	p) Si $u = (u_1, u_2, u_3) \in K$ et $v = (v_1, v_2, v_3) \in K$ et si $t \in [0, 1]$ alors $w = tu + (1 - t)v = (w_1, w_2, w_3)$ avec $w_i = tu_i + (1 - t)v_i$ de sorte que $w_i \ge 0$ et $w_1 + w_2 + w_3 = t(u_1 + u_2 + u_3) + (1 - t)(v_1 + v_2 + v_3) = t + (1 - t) = 0$ et ainsi $w \in K$ donc K est convexe. \square
B.1.c	e) Soit (a, b, c) fixé dans \mathbb{C}^3 et soit F l'application de \mathbb{R}^3 dans C définie par $F(\alpha, \beta, \gamma) = \alpha a + \beta b + \gamma c$. F est continue donc $\widehat{abc} = F(K)$ est compact en tant qu'image continue d'un compact. Par ailleurs F est linéaire donc $F(K)$ est convexe (image d'un convexe par une application affine). En conclusion \widehat{abc} est un compact convexe de \mathbb{C} . \square

B.1.d)L'application d de \mathbb{C}^2 dans \mathbb{R} définie par $d(z_1, z_2) \longmapsto z_1 - z_2 $ est continue (composée de $(z_1, z_2) \longmapsto z_1 - z_2 = z$
qui est linéaire donc continue car espace de départ de dimension finie par l'application $z\longmapsto z $ qui est 1-
lipschitzienne). Par ailleurs \widehat{abc}^2 est un compact de \mathbb{C}^2 en tant que produit de deux compacts. Donc l'application
d est bornée sur \widehat{abc}^2 et y atteint sa borne supérieure. D'où l'existence de $\delta(\widehat{abc})$. \square

B.2.a) Notons $M = \max(|z-a|, |z-b|, |z-c|)$ et soit $z' = \alpha a + \beta b + \gamma c \in \widehat{abc}$.

Il vient par inégalité triangulaire et du fait que α , β et γ sont positifs :

$$|z - z'| \leqslant \alpha |z - a| + \beta |z - b| + \gamma |z - c| \leqslant (\alpha + \beta + \gamma)M = M$$

Donc $\sup\{|z-z'|\ /\ z'\in\widehat{abc}\}\leqslant M$ et l'inégalité inverse résulte du fait que a,b et c appartiennent à \widehat{abc} . \square

B.2.b)Soit $(z_1, z_2) \in \widehat{abc}$ tel que $|z_1 - z_2| = \delta(\widehat{abc})$ dont l'existence est assurée par B.1.d)

On a alors $|z_1 - z_2| = \max\{|z_1 - z'| / z' \in \widehat{abc}\} = \max(|z_1 - a|, |z_1 - b|, |z_1 - c|)$ ce qui prouve qu'on peut toujours choisir z_2 parmi a, b ou c. De même pour z_1 vu le symétrie des rôles joués par z_1 et z_2 .

Ainsi $\delta(\widehat{abc}) = \max(|a-b|, |b-c|, |c-a|)$

B.3) Pour i=0 ou 1 on a $\phi_i(\tau) \subset \tau$ d'après la question I.A.4) donc $\phi_{r_{n+1}}(\tau) \subset \tau$ pour tout n donc en composant par $\phi_{r_1} \circ \phi_{r_2} \circ \ldots \circ \phi_{r_n}$ il vient $\widetilde{\tau}_{n+1} \subset \widetilde{\tau}_n$.

Par ailleurs toujours par la question I.A.4), $\widetilde{\tau}_n$ est un triangle plein dont le diamètre est, d'après les questions A.3.c) et B.2.b), $d_n = \frac{2}{\sqrt{2^n}}$.

Soit la suite (a_n) définie par $a_n = \phi_{r_1} \circ \phi_{r_2} \circ \dots \circ \phi_{r_n}(1)$. Naturellement $a_n \in \widetilde{\tau}_n$. Ainsi $|a_n - a_{n-1}| \leq d_{n-1}$ puisque $\widetilde{\tau}_n \subset \widetilde{\tau}_{n-1}$. Comme la série géomérique $\sum d_n$ converge, la série $\sum (a_n - a_{n-1})$ converge absolument donc converge et ainsi la suite (a_n) converge vers une limite notée a.

Soit un entier $k \geqslant 1$ fixé quelconque. Pour $n \geqslant k$ on a que $a_n \in \widetilde{\tau}_n \subset \widetilde{\tau}_k$ donc $a \in \overline{\widetilde{\tau}_k} = \widetilde{\tau}_k$ puisque $\widetilde{\tau}_k$ est un triangle plein donc est fermé par la question B.1.c). Ainsi $a \in \bigcap_{k \geqslant 1} \widetilde{\tau}_k$.

Soit désormais $b \in \bigcap_{k \geqslant 1} \widetilde{\tau}_k$. Alors $(a, b) \in \widetilde{\tau}_n$ donc $|a - b| \leqslant d_n$ pour tout entier n donc a = b.

Ainsi $\bigcap_{k\geqslant 1}\widetilde{\tau}_k$ est bien réduit à un seul point appartenant à τ . \square

Partie II. Construction de l'application f.

- 1) $f_0(x) = 2x 1$ de manière immédiate. \square
- 2) Soit $g \in \mathcal{E}$. Il vient :
 - $Tg(0) = \phi_0(g(0)) = \phi_0(-1) = -1$ et $Tg(1) = \phi_1(g(1)) = \phi_1(1) = 1$
 - Par composition d'applications continues, les restrictions de Tg à $\left[0,\frac{1}{2}\right]$ et à $\left[\frac{1}{2},1\right]$ sont continues.

En outre $\lim_{x \to 1/2^+} Tg(x) = \lim_{h \to 0^+} \phi_1(g(2h)) = \phi_1(g(0)) = \phi_1(-1) = i$ et $Tg(\frac{1}{2}) = \phi_0(g(1)) = \phi_0(1) = i$

ce qui prouve que Tg est bien continue en $\frac{1}{2}$ et donc sur [0,1].

- En conclusion $Tg \in \mathcal{E}$ pour tout $g \in \mathcal{E}$. \square
- 3) Si $x \in \left[0, \frac{1}{2}\right]$ on a $\left|Tg_2(x) Tg_1(x)\right| = \frac{1}{\sqrt{2}}\left|\overline{g_2(2x)} \overline{g_1(2x)}\right| = \frac{1}{\sqrt{2}}\left|g_2(2x) g_1(2x)\right|$.

Donc $\sup_{x \in [0,1/2]} |Tg_2(x) - Tg_1(x)| = \frac{1}{\sqrt{2}} ||g_2 - g_1||_{\infty}$ puisque 2x parcourt [0,1] lorsque x parcourt $\left[0,\frac{1}{2}\right]$.

De même $\sup_{x \in [1/2,1]} |Tg_2(x) - Tg_1(x)| = \frac{1}{\sqrt{2}} ||g_2 - g_1||_{\infty} \operatorname{car} 2x - 1 \operatorname{parcourt} [0,1] \operatorname{lorsque} x \operatorname{parcourt} \left[\frac{1}{2},1\right].$

Ainsi $||Tg_2 - Tg_1|| = \frac{1}{\sqrt{2}}||g_2 - g_1||$. \square

4.a) Pour n et p entiers positifs quelconques, on a compte tenu de ce qui précède :

$$||f_{n+p} - f_n||_{\infty} \le \left(\frac{1}{\sqrt{2}}\right)^n ||f_p - f_0||_{\infty} \text{ et}$$

$$||f_p - f_0||_{\infty} \leqslant ||f_p - f_{p-1}||_{\infty} + \ldots + ||f_1 - f_0||_{\infty} \leqslant \left(\left(\frac{1}{\sqrt{2}}\right)^{p-1} + \left(\frac{1}{\sqrt{2}}\right)^{p-2} + \ldots + 1\right) ||f_1 - f_0||_{\infty}$$

donc
$$||f_{n+p} - f_n||_{\infty} \le \left(\frac{1}{\sqrt{2}}\right)^n \times \frac{1 - \left(1/\sqrt{2}\right)^p}{1 - (1/\sqrt{2})} \times ||f_1 - f_0||_{\infty} \le \left(\frac{1}{\sqrt{2}}\right)^n \times \frac{\sqrt{2}}{\sqrt{2} - 1} \times ||f_1 - f_0||_{\infty} = \varepsilon_n$$

où ε_n est une quantité indépendante de p et tendant vers 0 lorsque $n \to +\infty$.

Cela prouve que la suite (f_n) satisfait au critère de Cauchy de convergence uniforme et donc converge uniformément sur [0,1] vers une fonction f.

En outre comme les fonctions f_n sont des éléments de \mathcal{E} , les fonctions f_n sont continues donc f également par théorème de récupération uniforme de la continuité. Par ailleurs $f(0) = \lim_{n \to +\infty} f_n(0) = -1$ car $f_n(0) = -1$ pour tout entier n et de même f(1) = 1.

En conclusion la suite (f_n) converge uniformément sur [0,1] vers une fonction $f \in \mathcal{E}$. \square

4.b) D'après la question II.3), T est une application de \mathcal{E} dans lui-même lipschitzienne donc continue pour la norme

Comme la suite (f_n) converge pour cette norme vers f, il en découle que Tf_n converge vers Tf.

En passant à la limite (uniforme) dans $Tf_n = f_{n+1}$ il vient donc Tf = f.

On établit par récurrence la propriété $\mathcal{H}_n: \langle f_n(x) = -\overline{f_n(1-x)} \rangle \forall x \in [0,1] \rangle$ On commence par remarquer que par symétrie de la relation par rapport à $\frac{1}{2}$, il suffit de la vérifier pour $x \in \left[0, \frac{1}{2}\right].$

 \mathcal{H}_0 est vraie car $f_0(x) = 2x - 1$.

Supposons la propriété vraie jusqu'au rang n. Il vient alors pour $x \in \left[0, \frac{1}{2}\right]$:

$$-f_{n+1}(1-x) = -Tf_n(1-x) = -\phi_1\Big(f_n\Big(2(1-x)-1\Big)\Big) = -\phi_1\Big(f_n\Big(1-2x\Big)\Big) = -\frac{1-i}{2} \overline{f_n(1-2x)} - \frac{1+i}{2}$$

$$= \frac{1-i}{2} f_n(2x) - \frac{1+i}{2} \text{ par hypothèse de récurrence. Donc}$$

$$-\overline{f_{n+1}(1-x)} = \frac{1+i}{2} \overline{f_n(2x)} + \frac{-1+i}{2} = \phi_0\Big(f_n(2x)\Big) = Tf_n(x) = f_{n+1}(x).$$

Ainsi la propriété \mathcal{H}_n est bien établie pour tout entier n et par passage à la limite simple on obtient bien :

$$f(x) = -\overline{f(1-x)} \quad \forall x \in [0,1]. \quad \Box$$

Soit γ l'arc paramétré $t \longmapsto f(t)$ pour $t \in [0,1]$. La partie correspondant à $t \geqslant 1/2$ se déduit de la partie $t \leqslant 1/2$ par réflexion par rapport à l'axe des y. \square

Partie III. Propriétés de f.

III.A - Image de f

A.1.a) Immédiat car $0 \leqslant \frac{r_n}{2^n} \leqslant \frac{1}{2^n}$ pour tout $n \geqslant 1$.

- A.1.b)On prouve la relation demandée par récurrence sur p.
 - Pour p = 1 on a $x_1 = \sum_{n=0}^{+\infty} \frac{r_{n+1}}{2^n} = 2 \sum_{n=0}^{+\infty} \frac{r_{n+1}}{2^{n+1}} = 2\left(x \frac{r_1}{2}\right) = 2x r_1.$

Or si $r_1 = 1$ on a nécessairement $x \ge 1/2$ de sorte que $\phi_{r_1}(f(x_1)) = \phi_1(f(2x-1)) = Tf(x) = f(x)$ (Cf II.4.b)

De même si
$$r_1 = 0$$
 alors $x = \sum_{n=2}^{+\infty} \frac{r_n}{2^n} \leqslant \sum_{n=2}^{+\infty} \frac{1}{2^n} = \frac{1}{2}$ et $\phi_{r_1}(f(x_1)) = \phi_0(f(2x)) = Tf(x) = f(x)$

La relation est ainsi établie pour p=1

• Supposons la relation établie jusqu'au rang p-1 avec $p\geqslant 2.$

On établit facilement comme ci-dessus que $x_p = 2x_{p-1} - r_p$ et que si $r_p = 1$ (resp. $r_p = 0$) alors $x_{p-1} \geqslant 1/2$ (resp. $\leq 1/2$) donc que (dans les 2 cas) $\phi_{r_p}(f(x_p)) = Tf(x_{p-1}) = f(x_{p-1})$ donc :

 $\phi_{r_1} \circ \phi_{r_2} \dots \phi_{r_p} \Big(f(x_p) \Big) = \phi_{r_1} \circ \phi_{r_2} \dots \phi_{r_{p-1}} \Big(f(x_{p-1}) \Big) = f(x)$ par hypothèse de récurrence. • La relation proposée est donc bien établie pour tout entier $p \geqslant 1$. \square

- **A.2.a)** Par définition de la partie entière on a $2^nx-1<\left[2^nx\right]\leqslant 2^nx$ et $2\left(2^{n-1}x-1\right)<2\left[2^{n-1}x\right]\leqslant 2^nx$ donc $-1<\left[2^nx\right]-2\left[2^{n-1}x\right]<2$ et ainsi $\left[2^nx\right]-2\left[2^{n-1}x\right]\in\{0,1\}$ puisqu'il s'agit d'un entier. \square
- **A.2.b**) Il vient $\frac{r_n(x)}{2^n} = \frac{\left[2^n x\right]}{2^n} \frac{\left[2^{n-1} x\right]}{2^{n-1}}$ pour $n\geqslant 1$ donc par télescopage :

$$\sum_{n=1}^{N} \frac{r_n(x)}{2n} = \frac{[2^N x]}{2^N} - \frac{[x]}{2} = \frac{[2^N x]}{2^N} \text{ car } x \in [0, 1[\quad \Box$$

Or $\frac{2^N x - 1}{2^N} \leqslant \frac{\left[2^N x\right]}{2^N} \leqslant \frac{2^N x}{2^N}$ donc par le principe des gendarmes $\lim_{N \to +\infty} \frac{\left[2^N x\right]}{2^N} = x$.

En d'autres termes
$$\sum_{n=1}^{+\infty} \frac{r_n(x)}{2^n} = x \quad \forall x \in [0,1[\quad \Box$$

A.2.c) Soit $x = \frac{k}{2^N} \in \mathbb{Z}\left[\frac{1}{2}\right]$ avec $2 \wedge k = 1$.

Pour n > N on a que $2^n x$ et $2^{n-1} x$ sont deux entiers donc $r_n(x) = \lceil 2^n x \rceil - 2 \lceil 2^{n-1} x \rceil = 0$

- **A.2.d**) Pour $x = \frac{1}{2}$ on a $r_1(x) = 1$ et $r_n(x) = 0$ pour $n \ge 2$. En d'autres termes $x_1 = 0$ donc par la question III.A.1.b), il vient $f\left(\frac{1}{2}\right) = \phi_1\left(f(0)\right) = \phi_1(-1) = i$.
 - Pour $x = \frac{1}{4}$ on a $r_1(x) = 0$, $r_2(x) = 1$ et $r_n(x) = 0$ pour $n \ge 3$. Donc $x_1 = \frac{1}{2}$ et $x_2 = 0$ d'où:

$$f\left(\frac{1}{4}\right) = \phi_0 \circ \phi_1\left(f(0)\right) = \phi_0 \circ \phi_1(-1) = \phi_0(i) = 0$$

• Avec les notations de I.A.3.c), on a $\phi_0 = h_0 \circ s_0 = s_0 \circ h_0$ donc $\phi_0 \circ \phi_0 = h_0 \circ h_0$ c'est à dire c'est l'homothétie de centre -1 et de rapport $\frac{1}{2}$.

Soit désormais $x = \frac{1}{2^k}$ avec $k \geqslant 3$. Il vient $r_k(x) = 1$ et $r_n(x) = 0$ pour $n \neq k$ de sorte que $x_k = 0$, $x_{k-1} = \frac{1}{2}$,

$$x_{k-2} = \frac{1}{2} \dots \text{ et } x_1 = \frac{1}{2^{k-1}} \text{. Donc } f\left(\frac{1}{2^k}\right) = \underbrace{\phi_0 \circ \phi_0 \circ \dots \phi_0}_{k-1 \text{ fois}} \circ \phi_1 \left(f(0)\right) = \underbrace{\phi_0 \circ \phi_0 \circ \dots \phi_0}_{k-1 \text{ fois}} (i)$$

Si k est impair il en découle que $f\left(\frac{1}{2^k}\right) = -1 + \frac{i+1}{2^{(k-1)/2}}$ puisque $\underbrace{\phi_0 \circ \phi_0 \circ \dots \phi_0}_{k-1 \text{ fois}}$ est l'homothétie de centre -1 et de rapport $\left(\frac{1}{2}\right)^{(k-1)/2}$.

Si k est pair on a $f\left(\frac{1}{2^k}\right) = \underbrace{\phi_0 \circ \phi_0 \circ \dots \phi_0}_{(0)}(0) = -1 + \frac{1}{2^{(k-2)/2}}$

En conclusion $f\left(\frac{1}{2^{2n}}\right) = -1 + \frac{1}{2^{n-1}} \quad \forall n \geqslant 1 \quad \text{ et } \quad f\left(\frac{1}{2^{2n+1}}\right) = -1 + \frac{i+1}{2^n} \quad \forall n \geqslant 0 \quad \Box$

A.3.a) Si $x \in]0,1[\cap \mathbb{Z}\left[\frac{1}{2}\right]$ on sait qu'il existe $N \geqslant 1$ tel que $r_n(x) = 0$ pour n > N de sorte que (question III.A.1.b)

$$f(x) = \phi_{r_1} \circ \phi_{r_2} \circ \dots \circ \phi_{r_N} \Big(f(0) \Big) = \phi_{r_1} \circ \phi_{r_2} \circ \dots \circ \phi_{r_N} (-1)$$

et comme τ est stable par chaque ϕ_{r_i} on a bien que $f(x) \in \tau$.

C'est naturellement encore vrai si x=0 ou x=1 (car $f\in\mathcal{E}$) et ainsi $f\left(\left[0,1\right]\cap\mathbb{Z}\left[\frac{1}{2}\right]\right)\subset\tau$

A.3.b)Soit $x \in [0,1] \setminus \mathbb{Z}\left[\frac{1}{2}\right]$ et $\sum_{n=1}^{+\infty} \frac{r_n}{2^n}$ son développement binaire (question III.A.2.b). Alors $\left(\sum_{n=1}^{N} \frac{r_n}{2^n}\right)_{N \in \mathbb{N}^*}$ est une

suite de $\mathbb{Z}\left[\frac{1}{2}\right]$ qui converge vers x. Donc par continuité de f la suite $\left(f\left(\sum\limits_{n=1}^{N}\frac{r_n}{2^n}\right)\right)_{N\in\mathbb{N}}$ converge vers f(x).

Or cette suite est une suite d'éléments de τ par la question précédente et donc sa limite f(x) également puisque τ est un fermé. En conclusion finale $f([0,1]) \subset \tau$. \square

A.4.a) ϕ_0 (resp. ϕ_1) est une <u>bijection</u> de τ sur τ_0 (resp. τ_1). En effet ce sont deux bijections de $\mathbb C$ dans $\mathbb C$ et $\phi_i(\tau) = \tau_i$ comme déjà noté. Donc si $z_{n-1} \in \tau_0$ alors $z_n = \phi_0^{-1}(z_{n-1})$ est parfaitement défini et appartient bien à τ . De même si $z_{n-1} \notin \tau_0$ alors $z_{n-1} \in \tau_1$ (car $\tau = \tau_0 \cup \tau_1$ comme déjà vu) et donc $z_n = \phi_1^{-1}(z_{n-1})$ est bien défini et appartient à τ .

Ainsi les suites (r_n) et (z_n) sont définies (de manière unique) par itération et $z_n \in \tau$ pour tout entier n. \square

A.4.b)Par construction de la suite (z_n) et de la suite (r_n) on a $z = \phi_{r_1} \circ \phi_{r_2} \circ \dots \circ \phi_{r_n}(z_n)$ pour tout $n \ge 1$.

Par ailleurs avec les notations du III.a.1.b) on a $f(x) = \phi_{r_1} \circ \phi_{r_2} \circ \dots \circ \phi_{r_n} (f(x_n))$.

Il en découle que f(x) et z appartiennent tous deux à $\bigcap_{n\geqslant 1} \widetilde{\tau}_n$ donc f(x)=z par la question I.B.3). \square

A.4.c) Comme un antécédent de z est $\sum_{n=1}^{+\infty} \frac{r_n}{2^n}$, il suffit de calculer $\sum_{n=1}^{N} \frac{r_n}{2^n}$ avec N tel que $\sum_{n=N+1}^{+\infty} \frac{1}{2^n} = \frac{1}{2^N} < \varepsilon$

D'où l'algorithme suivant :

prec <- 1/2
X <- 0
Z <- z
Tant que (prec > epsilon) faire
Si (Re(Z) <= 0)
alors Z <- (1+I)*(conjugué(z)+(1+I)/2)
sinon Z <- (1-I)*(conjugué(z)+(-1+I)/2)
X <- X+prec
Fin si
prec <- prec/2
Fin tant que
-> X

A.5.a) On a vu que $f\left(\frac{1}{4}\right) = 0$ donc $f\left(\frac{3}{4}\right) = -\overline{0} = 0 = f\left(\frac{1}{4}\right)$ ce qui prouve que f n'est pas injective. \square

- **A.5.b**)Supposons qu'il existe une bijection continue g de J = [0,1] sur τ .
 - Alors g^{-1} est une application continue de τ sur J.

En effet supposons g^{-1} non continue. Alors il existe $z_0 \in \tau$, une suite $(z_n)_{n\geqslant 1}$ d'éléments de τ et un réel $\alpha>0$ tels que la suite (z_n) converge vers z_0 et $|g^{-1}(z_n)-g^{-1}(z_0)|\geqslant \alpha$ pour tout $n\geqslant 1$. Notons $x_n=g^{-1}(z_n)$. La suite $(x_n)_{n\geqslant 1}$ en tant que suite du compact J admet une suite extraite (y_n) avec $y_n=x_{\varphi(n)}$ qui converge vers un élément noté y_0 de J. Or comme g est continue sur J donc en y_0 on a que la suite $(g(y_n))$ converge vers $g(y_0)$. Mais par ailleurs $g(y_n)=g(g^{-1}(z_{\varphi(n)}))=z_{\varphi(n)}$ converge vers z_0 en tant que suite extraite de la suite (z_n) qui converge vers z_0 . Il en découle que $g(y_0)=z_0$ donc que $y_0=g^{-1}(z_0)$.

Mais alors $|y_n - y_0| = |g^{-1}(z_{\varphi(n)}) - g^{-1}(z_0)| \ge \alpha$ pour tout $n \ge 1$ ce qui en <u>contradiction</u> avec le fait que la suite (y_n) converge vers y_0 .

- Il existe au moins un sommet de τ que nous noterons a différent de g(0) et de g(1) en d'autres termes tel que $g^{-1}(a) = s \in \left]0,1\right[$. La restriction h de g^{-1} à $\tau' = \tau \setminus \{a\}$ est continue sur τ' (en tant que restriction de l'application continue g^{-1}) et τ' est encore convexe donc a fortiori connexe par arcs. Or $h(\tau') = J \setminus \{s\}$ non connexe par arcs puisque $s \in \stackrel{\circ}{J}$. Ce qui fournit la contradiction finale. \square
- **A.6.a)** On a déjà noté géométriquement (grâce à la question I.A.3.c) que $\phi_0 \circ \phi_0$ est l'homothétie de centre -1 et de rapport $\frac{1}{2}$ donc s'écrit $z \longmapsto \frac{1}{2}(z-1)$.

On prouve exactement de même que $\phi_1 \circ \phi_1$ est l'homothétie de centre 1 et de rapport $\frac{1}{2}$ qui s'écrit $z \longmapsto \frac{1}{2}(z+1)$.

Il vient par un calcul immédiat que $\phi_0 \circ \phi_1(z) = \frac{i}{2}(z+1)$. Donc $a = \frac{-1+2i}{5}$ est point fixe et il s'agit de la similitude directe de centre a, de rapport $\frac{1}{2}$ et d'angle $\frac{\pi}{2}$.

De même $\phi_1 \circ \phi_0(z) = -\frac{i}{2}(z-1)$ et il s'agit de la similitude directe de centre $b = \frac{1+2i}{2}$, de rapport $\frac{1}{2}$ et d'angle $-\frac{\pi}{2}$.

A.6.b)Première démonstration :

 ϕ_0 et ϕ_1 sont des applications affines dont l'application linéaire associée multiplie les normes par $\frac{1}{\sqrt{2}}$ donc l'application linéaire associée à ϕ les multiplie par $\frac{1}{(\sqrt{2})^p}$. Il en découle que 1 n'est pas valeur propre donc classiquement ϕ admet un point fixe et un seul. \square

Deuxième démonstration :

 ϕ est une application contractante de $\mathbb C$ dans lui-même et $\mathbb C$ est complet. D'où la conclusion par le théorème du point fixe. \square

A.6.c) Soit x le réel de développement dyadique périodique $0, r_1r_2...r_pr_1r_2...r_pr_1r_2...r_p...$

Alors $x = x_p$ et la relation fondamentale du III.A.1.b) s'écrit $f(x) = \phi(f(x))$ ce qui prouve que f(x) est un (donc le) point fixe de ϕ . \square

A.6.d)Soit $z_0 \in \tau$, $\varepsilon > 0$ donné quelconque et $x_0 \in [0,1]$ tel que $f(x_0) = z_0$ (licite puisque on a vu que f est surjective de [0,1] sur τ)

Comme f est continue il existe $\alpha > 0$ tel que $|x - x_0| \le \alpha$ (et $x \in [0,1]$) implique $|f(x) - f(x_0)| \le \varepsilon$

Soient alors $0, r_1 r_2 ... r_n$... le développement dyadique de x_0, p tel que $\frac{1}{2^p} \leqslant \alpha$ et x le réel de développement

dyadique périodique $x = 0, r_1 r_2 \dots r_p r_1 r_2 \dots r_p r_1 r_2 \dots r_p \dots$

Alors f(x) est point fixe de $\phi_1 \circ \phi_2 \circ \dots \circ \phi_p$ et $|f(x) - f(x_0)| = |f(x) - z_0| \leqslant \varepsilon$

III.B - Dérivabilité de f

B.1) Supposons f dérivable en $x \in [0,1]$ (pas forcément sur [0,1)). Alors elle y admet un développement limité à l'ordre 1 qui s'écrit $f(y) = f(x) + (y-x)f'(x) + (y-x)\varepsilon(y-x)$ avec $\lim \varepsilon(t) = 0$.

l'ordre 1 qui s'écrit
$$f(y) = f(x) + (y - x)f'(x) + (y - x)\varepsilon(y - x)$$
 avec $\lim_{t \to 0} \varepsilon(t) = 0$.
Donc $\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = f'(x) + \varepsilon'_n$ avec $\varepsilon'_n = \frac{(\beta_n - x)\varepsilon(\beta_n - x) - (\alpha_n - x)\varepsilon(\alpha_n - x)}{\beta_n - \alpha_n}$.

Notons $\widetilde{\varepsilon}_n = \max \left(|\varepsilon(\beta_n - x)|, |\varepsilon(\alpha_n - x)| \right)$. Alors $\lim_{n \to +\infty} \widetilde{\varepsilon}_n = 0$ et :

$$|\epsilon'_n| \leqslant \frac{(\beta_n - x)\widetilde{\varepsilon}_n + (x - \alpha_n)\widetilde{\varepsilon}_n}{\beta_n - \alpha_n} \text{ (car } \alpha_n \leqslant x \leqslant \beta_n) \text{ donc } |\varepsilon'_n| \leqslant \widetilde{\varepsilon}_n \text{ et ainsi } \lim_{n \to +\infty} \varepsilon'_n = 0. \quad \Box$$

B.2.a) Soit $x \in [0,1[$ de développement dyadique $x=0,r_1r_2...r_n...$ On envisage les 2 suites (α_n) et (β_n) de développements dyadiques $\alpha_n=0,r_1r_2...r_n000...$ et $\beta_n=0,r_1r_2...r_n111...$ de sorte que l'on se trouve bien dans les conditions de la question précédente $(\alpha_n \le x \le \beta_n \text{ et } \beta_n - \alpha_n = \frac{1}{2^n})$.

Notons $\phi = \phi_{r_1} \circ \phi_{r_2} \circ \ldots \circ \phi_{r_n}$.

La relation fondamentale III.A.1.b) fournit $f(\alpha_n) = \phi(f(0)) = \phi(-1)$ et $f(\beta_n) = \phi(f(1)) = \phi(1)$

Ainsi $\frac{f(\beta_n) - f(\alpha_n)}{\beta_n - \alpha_n} = 2^n \Big(\phi(1) - \phi(-1)\Big)$ dont le module tend vers $+\infty$ car ϕ est une bijection affine donc en particulier est injective donc $\phi(1) - \phi(-1) \neq 0$.

La question précédente montre alors que f n'est pas dérivable en x. \square

B.2.b) Si f était dérivable (à gauche) en 1, en vertu de la relation $f(x) = -\overline{f(1-x)}$, elle serait dérivable (à droite) en 0 ce qui n'est pas par la question précédente. \square

_____ FIN ____