MINES 1995 – Première épreuve Correction

- Première Partie -

- I.1.a) L'ensemble T(U) est une partie non vide de \mathbb{N} , elle possède donc un plus petit élément p_0 . T(U) est l'ensemble des multiples non nuls de p_0 . En effet il est clair que tout multiple de p_0 est une période de U. Réciproquement si p est une période de U en effectuant la division euclidienne de p par p_0 on peut écrire $p = qp_0 + r$ avec $0 \le r \le p_0$. On aura pour tout n $u_{n+r} = u_{n+r+qp_0} = u_{n+p} = u_n$ or $r < p_0$ donc r = 0. $T(\Omega) = \mathbb{N}^*$ et $T(C) = 4\mathbb{N}^*$.
- I.1.b) Toute suite périodique ne prend qu'un nombre fini de valeurs et est donc bornée. La suite nulle est périodique. Si U admet p pour période, p est aussi période de λU pour tout scalaire λ . Si p est période de U et q période V alors pq est période de U + V. En conclusion \mathcal{P} est non vide, contenu dans B stable pour la loi externe et l'addition, c'est un sous-espace vectoriel de B.
- I.1.c) Si \mathcal{P} admettait une base (U_1, \ldots, U_n) alors le produit des périodes des U_i serait une période commune à toute les suites périodiques. Or il existe des suites périodiques de période arbitrairement longue par exemple une des suites $U_p = (\cos(\frac{2n\pi}{p}))_{n \in \mathbb{N}}$.
- I.2.a) (A(U, p, n)) est ce que l'on pourrait appelé la valeur moyenne de la suite.) On remarque que $p(A(U, p, n+1) A(U, p, n)) = u_{n+p} u_n = 0$ donc A(U, p, n) ne dépend pas de n. Si $p = qp_0$, où p_0 est la période minimale de la suite U, alors $pA(U, p, 0) = q(p_0A(U, p_0, 0))$ donc $A(U, p, 0) = A(U, p_0, 0)$ ne dépend pas non plus de p.
- I.2.b) $L(\Omega) = 1$ et $L(C) = \frac{1}{4}(0 + (-1) + 0 + 1) = 0$.
- I.2.c) Soit U un élément de \mathcal{P} on peut écrire $U = (U L(U)\Omega) + L(U)\Omega$. On a $L(U L(U)\Omega) = L(U) L(U)L(\Omega) = 0$ par linéarité de L, donc \mathcal{P} est la somme de \mathcal{P}_0 et \mathcal{P}_1 . La somme est directe car $L(\lambda\Omega) = \lambda$ donc $\mathcal{P}_0 \cap \mathcal{P}_1 = \{0\}$.
- I.3.a) Pour tout n, et si p est une période de U, $u'_{n+p} = u_{n+p+1} u_{n+p} = u_{n+1} u_n = u'_n$. Donc U' est bien périodique. La linéarité de D est évidente. $D(\Omega) = 0$ (la suite nulle) et $D(C) = (-1, 1, 1, -1, \ldots)$ la suite étant périodique de période 4. Le noyau de D est formé des suites $U = (u_n)$ telle que pour tout $n : u_{n+1} = u_n$. Il s'agit des suites constantes, qui sont aussi les multiples de Ω par conséquent Ker $D = \mathcal{P}_1$. Si U est de période p alors p est aussi une

période de D(U) et $L(D(U)) = A(D(U), p, 0) = \frac{1}{p}(u_p - u_0) = 0$. On peut déjà affirmer que Im $D \subset \mathcal{P}_0$. Prouvons l'inclusion opposée. Soit V un élément de \mathcal{P}_0 définissons la suite U par $u_0 = v_0$ et pour $n \geq 0$: $u_{n+1} = u_n + v_n$. Vérifions que U est périodique, plus précisément que si p est période de V p est aussi période de U. En fait $u_{n+p} = u_n + \sum_{k=0}^{p-1} v_{n+k} = u_n$ car V est élément de \mathcal{P}_0 . U est bien un élément de \mathcal{P} et par construction D(U) = V.

I.3.b) Le sous-espace \mathcal{P}_0 étant l'image de D il est stable par D. Le noyau de D_0 est Ker $D \cap \mathcal{P}_0 = \mathcal{P}_1 \cap \mathcal{P}_0 = \{0\}$ donc D_0 est injectif. De plus pour tout V de \mathcal{P}_0 il existe U dans \mathcal{P} tel que D(U) = V. On peut écrire ce U sous la forme $U_0 + U_1$ où $U_i \in \mathcal{P}_i$ puisque $\mathcal{P} = \mathcal{P}_0 \oplus \mathcal{P}_1$. Il en résulte $D(U) = D(U_0) + D(U_1) = D(U_0) = D_0(U_0)$, ce qui prouve la surjectivité de D_0 .

I.3.c) Le nombre complexe λ est une valeur propre de D_0 s'il existe un élément U non nul de \mathcal{P}_0 tel que $D(U) = \lambda U$. Ceci implique $\forall n \in \mathbb{N}$ $u_{n+1} - u_n = \lambda u_n$. La suite U est donc de la forme $U = u_0((1+\lambda)^n)_{n \in \mathbb{N}}$ avec $u_0 \neq 0$. Pour qu'une telle suite soit un élément de \mathcal{P} il faut et qu'il existe un p_0 tel que $(1+\lambda)^{p_0} = 1$, p_0 étant choisi minimal. On ne peut prendre $p_0 = 1$ car D_0 étant un automophisme $\lambda = 0$ n'est pas valeur propre de D_0 . Par conséquent si λ est valeur propre de D_0 il existe un entier $p_0 \geq 2$ et un entier k avec $1 \leq k < p_0$ tels que $\lambda = e^{\frac{2ik\pi}{p_0}} - 1$. Réciproquement si λ est de cette forme plore $(1+\lambda)^{p_0} \neq 1$ et $(1+\lambda)^{p_0} = 1$ donc $p_0 = 1$ donc $p_0 = 1$.

alors $(1+\lambda) \neq 1$ et $(1+\lambda)^{p_0} = 1$ donc $p_0 L(((1+\lambda)^n)_{n \in \mathbb{N}}) = \sum_{k=0}^{p-1} (1+\lambda)^k = 0$ et $U = ((1+\lambda)^n)_{n \in \mathbb{N}}$ est bien un élément non nul de \mathcal{P}_0 vérifiant $D(U) = \lambda U$.

I.4.a) La linéarité de θ est évidente. La seule chose à vérifier est que l'on arrive bien dans \mathcal{P} . Or pour tout entier n on a $u_{n+p}^* = u_n^* + pA(U, p, n+1) = u_n^*$ car U appartient à \mathcal{P}_0 .

I.4.b) Par construction $D(\theta(U)) = (u_{n+1})_{n \in \mathbb{N}}$, par conséquent si $U^* = \theta(U) = 0$ on aura $\forall n \geq 1$ $u_n = 0$, et comme de plus $u_0' = u_0$ on aura U = 0 et finalement Ker $\theta = \{0\}$. Montrons que l'image de θ est l'ensemble T des suites périodiques U telles que si p est une période de U alors $u_{p-1} = 0$. L'image de θ est évidemment incluse dans T. Si V est donné dans T, admettant la période p, il suffit de trouver U dans \mathcal{P}_0 tel que $\theta(U) = V$, c'est-à-dire $u_0 = v_0$ et pour tout $n \geq 0$ $v_{n+1} = u_{n+1}^* = u_n^* + u_{n+1} = v_n + u_{n+1}$. Ces relations nous déterminent une suite U unique : $u_0 = v_0$ et pour $n \geq 1$ $u_n = v_n - v_{n-1}$. Puisque V est périodique $u_{n+p} = u_n$ pour $n \geq 1$, et puisque $v_{p-1} = 0$ on a aussi $u_p = u_0$ donc U est périodique. De plus $L(U) = \frac{1}{p}(v_p - v_0) = 0$ donc U est bien un élément de \mathcal{P}_0 .

II.1) Si U est un élément non nul de \mathcal{P} , alors elle est périodique non nulle et ne peut donc tendre vers zéro. la série de terme général u_n est donc divergente. Tout élément U de \mathcal{P} est borné donc d'après le critère de Riemann la série de terme général $\frac{u_n}{n^{\alpha}}$ est absolument convergente si $\alpha > 1$ donc convergente.

II.2.a) On peut écrire
$$\frac{1}{kp+j} = \frac{1}{kp} \frac{1}{1+\frac{j}{kp}} = \frac{1}{kp} - \frac{j}{k^2p^2} + o(\frac{1}{k^2}).$$

II.2.b) On en déduit

$$w_k = \frac{L(U)}{k} - \frac{\sum_{j=0}^{p-1} j u_j}{p^2} \frac{1}{k^2} + o(\frac{1}{k^2}).$$

Donc, si $w_k = \frac{L(U)}{k} + z_k$, on a $(z_k) = O(\frac{1}{k^2})$ et la série $\sum_{n\geq 1} z_n$ est absolument convergente. La série $\sum_{n\geq 1} w_n$ converge donc si et seulement si la série $\sum_{n\geq 1} \frac{L(U)}{n}$ converge, c'est à dire si et seulement si L(U) = 0, cette condition caractérisant les éléments de \mathcal{P}_0 .

II.2.c) On a $\sum_{n=1}^{Np+p-1} v_n = v_1 + \cdots + v_{p-1} + \sum_{k=1}^{N} w_k$. Une condition nécessaire pour que $\sum_{n\geq 1} v_n$ converge est donc que $\sum_{n\geq 1} w_n$ converge, donc que U soit élément de \mathcal{P}_0 . Réciproquement, si U est élément de \mathcal{P}_0 la série $\sum_{n\geq 1} w_n$ converge donc la suite $(\sum_{n=1}^{Np-1} v_n)_{N\in\mathbb{N}}$ converge. Or, pour tout entier m plus grand que p:

$$\sum_{n=1}^{m} v_n = v_1 + \dots + v_{p-1} + \sum_{n=1}^{Np-1} v_n + \sum_{n=Np}^{m} v_n$$

avec $Np \le m+1 < (N+1)p$, en fait $N = \mathrm{E}(\frac{m+1}{p})$. Or

$$\left| \sum_{n=Np}^{m} v_n \right| \le \frac{1}{Np} \sum_{k=0}^{p-1} |u_k|$$

et par conséquent

$$\lim_{m \to +\infty} \left| \sum_{n=Np}^{m} v_n \right| = 0.$$

Il en résulte bien que la série $\sum_{n>1} v_n$ converge.

II.3.a) On a $S(C) = \sum_{k=0}^{+\infty} \frac{(-1)^{k+1}}{2k+1} = -\frac{\pi}{4}$. En effet pour tout x de [0,1] on a :

$$\frac{1}{1+x^2} = 1 - x^2 + \dots + (-1)^n x^{2n} + \frac{(-1)^{n+1} x^{2(n+1)}}{1+x^2}.$$

En intégrant sur [0,1] on obtient

$$\frac{\pi}{4} = \sum_{k=0}^{n} \frac{(-1)^k}{2k+1} + (-1)^{n+1} \int_0^1 \frac{t^{2n+2}}{1+t^2} dt.$$

Or

$$0 \le \int_0^1 \frac{t^{2n+2}}{1+t^2} dt \le \int_0^1 t^{2n+2} dt = \frac{1}{2n+3}$$

et il suffit donc de faire tendre n vers l'infini.

II.3.b) Remarquons tout d'abord que T est bien un élément de \mathcal{P}_0 , de plus :

$$\begin{split} S(T) &= \lim_{n \to +\infty} \sum_{k=1}^{np} \frac{u_k}{k}, \\ &= \lim_{n \to +\infty} \left(\sum_{k=1}^{np} \frac{1}{k} - \sum_{j=1}^{n} \frac{p}{jp} \right), \\ &= \lim_{n \to +\infty} \left(\sum_{k=1}^{np} \frac{1}{k} - \sum_{j=1}^{n} \frac{1}{j} \right), \\ &= \lim_{n \to +\infty} \left(\ln(np) + \gamma - \ln(n) - \gamma + \circ(1) \right), \\ S(T) &= \ln p. \end{split}$$

- Troisième partie -

III.1) Clairement $|L(U)| \leq ||U||_{\infty}$, donc L est lipschitzienne et $||L|| \leq 1$. Si $U = \Omega$ alors L(U) = 1 et $||U||_{\infty} = 1$ donc $||L|| \geq 1$ et finalement ||L|| = 1. \mathcal{P}_0 est l'image réciproque par l'application continue L du singleton $\{0\}$ qui est fermé dans \mathbb{C} , \mathcal{P}_0 est donc fermé dans \mathcal{P} .

III.2) Clairement $||D(U)||_{\infty} \leq 2||U||_{\infty}$, donc D est lipschitzienne et $||D|| \leq 2$. Avec le même raisonnement que dans la question précédente, en choisissant $U = ((-1)^n)$ on prouve ||D|| = 2.

III.3) En revanche, la fonction θ n'est pas lipschitzienne; On obtient facilement $\|\theta(U)\|_{\infty} \leq p\|U\|_{\infty}$ si U est de période p, d'où l'idée d'aller chercher des éléments de \mathcal{P}_0 de période arbitrairement grande. Plus précisément si

$$U = (\underbrace{1, \dots, 1}_{\text{q fois } 1}, \underbrace{-1, \dots, -1}_{\text{q fois } -1}, \dots)$$

de période p = 2q alors $||u||_{\infty} = 1$ et $||\theta(U)||_{\infty} = q = q||U||_{\infty}$, et ceci pour tout entier q ce qui prouve bien que θ n'est pas lipschitzienne.

III.4.a) Pour t dans]0,1 on a

$$f(t) = \frac{1 - t^q}{(1 - t)(1 + t^q)} = \frac{1 + \dots + t^{q-1}}{1 + t^q}$$

et cette fonction de t peut donc être prolongée par continuité à [0,1]. L'intégrale I_q existe donc. De plus pour tout t de [0,1] on $f(t) \geq \frac{1}{2}(1+t+\cdots+t^{q-1})$. On en déduit par intégration $I_q \geq \frac{1}{2}(1+\frac{1}{2}+\cdots+\frac{1}{q})$. Par conséquent I_q tend vers $+\infty$ lorsque q tend vers $+\infty$.

III.4.b) Remarquons que Z est dans \mathcal{P}_0 . On a $S(Z) = \lim_{N \to +\infty} V_N$ avec

$$\begin{split} V_N &= \sum_{m=0}^{N-1} \left(\sum_{n=2mq+1}^{2(m+1)q} \frac{z_n}{n} \right), \\ &= \sum_{m=0}^{N-1} \left(\sum_{n=2mq+1}^{(2m+1)q} \frac{1}{n} - \sum_{n=(2m+1)q+1}^{2(m+1)q} \frac{1}{n} \right), \\ &= \sum_{m=0}^{N-1} \left(\sum_{n=2mq+1}^{(2m+1)q} \int_0^1 t^{n-1} dt - \sum_{n=(2m+1)q+1}^{2(m+1)q} \int_0^1 t^{n-1} dt \right), \\ &= \sum_{m=0}^{N-1} \left(\int_0^1 t^{2mq} \frac{1-t^q}{1-t} dt - \int_0^1 t^{(2m+1)q} \frac{1-t^q}{1-t} dt \right), \\ &= \int_0^1 \left(\frac{1-t^{2Nq}}{1-t^{2q}} \frac{1-t^q}{1-t} - t^q \frac{1-t^{2Nq}}{1-t^{2q}} \frac{1-t^q}{1-t} \right) dt, \\ &= \int_0^1 \frac{(1-t^{2Nq})(1-t^q)}{(1+t^q)(1-t)} dt, \\ V_N &= I_q - \int_0^1 t^{2Nq} f(t) dt. \end{split}$$

La fonction f étant bornée sur [0,1] on peut montrer comme en II.3 que $(\int_0^1 t^{2Nq} f(t) dt)_{N \in \mathbb{N}}$ tend vers zéro et que $S(Z) = I_q$.

III.4.c) On a vu à la question précédente que $S(Z)=I_q$, d'autre part $\|Z\|_{\infty}=1$ et $\lim_{q\to+\infty}I_q=+\infty$. Il ne peut exister de M tel que pour tout U de P_0 on ait $|S(U)|\leq M\|U\|_{\infty}$. Ce qui veut exactement dire que S n'est pas lipschitzienne.