FILIÈRE MP

COMPOSITION DE MATHÉMATIQUES - A - (XLCR)

(Durée: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

* * *

Ce sujet porte sur l'étude des formes quadratiques sur un corps de caractéristique nulle et des groupes d'isométries associés.

Notations, Définitions

Dans tout ce problème, \mathbb{K} désignera un corps de caractéristique nulle, c'est-à-dire un corps tel que, pour tout entier $n \neq 0$, on a $n \cdot 1 \neq 0$ dans \mathbb{K} où 1 désigne l'unité de la loi multiplicative de \mathbb{K} , et $n \cdot 1 = 1 + \cdots + 1$.

Soit V un \mathbb{K} -espace vectoriel de dimension *finie*. On rappelle les trois points suivants.

– Une forme bilinéaire symétrique sur V est une application $b:V\times V\to \mathbb{K}$ telle que

$$b(x,y) = b(y,x)$$
 et $b(x + \lambda y, z) = b(x,z) + \lambda b(y,z)$

pour tous $x, y, z \in V$ et $\lambda \in \mathbb{K}$.

- Une forme quadratique sur V est une application $q:V\to\mathbb{K}$ telle que :
 - i) $q(\lambda v) = \lambda^2 q(v)$ pour tout $\lambda \in \mathbb{K}$ et tout $v \in V$;
 - ii) l'application $\widetilde{q}: V \times V \to \mathbb{K}$ définie par $(x,y) \mapsto \widetilde{q}(x,y) = \frac{1}{2} \Big(q(x+y) q(x) q(y) \Big)$ est bilinéaire symétrique.
- Une forme quadratique est dite non dégénérée si, pour tout $v \in V \{0\}$, il existe $w \in V$ tel que $\widetilde{q}(v, w) \neq 0$.

On notera Q(V) l'ensemble des formes quadratiques non dégénérées sur V.

Soient V et V' deux \mathbb{K} -espaces vectoriels de dimension finie.

- Une isométrie entre deux formes quadratiques $q:V\to\mathbb{K}$ et $q':V'\to\mathbb{K}$ est un isomorphisme linéaire $f:V\to V'$ tel que $q'\circ f=q$. On notera $q\cong q'$ si q et q' sont isométriques, c'est-à-dire s'il existe une isométrie entre q et q'.

On notera $O(q) := \{ f \in GL(V) \mid q \circ f = q \}$ le sous ensemble de GL(V) des isométries $f: V \to V$ entre q et elle-même. On appelle O(q) le groupe orthogonal de q.

Les deuxième et troisième parties du problème sont largement indépendantes.

Préliminaires sur les formes quadratiques et les isométries

Soit V un \mathbb{K} -espace vectoriel de dimension finie n. Soient $a_1, \ldots, a_n \in \mathbb{K} - \{0\}$. On note $\langle a_1, \ldots, a_n \rangle$ la forme quadratique q définie sur \mathbb{K}^n par la formule

$$q(x_1, \ldots, x_n) = a_1 x_1^2 + \cdots + a_n x_n^2$$
.

- 1. Démontrer que $\langle a_1, \dots, a_n \rangle$ est bien une forme quadratique sur \mathbb{K}^n .
- 2. Démontrer que l'application $q \mapsto \tilde{q}$ est une bijection de l'ensemble des formes quadratiques sur V sur les formes bilinéaires symétriques sur V.
- 3. Soit $\mathcal{B} := (e_1, \ldots, e_n)$ est une base de V. On associe à toute forme bilinéaire symétrique b sur V une matrice symétrique $\Phi_{\mathcal{B}}(b) := (b(e_i, e_j))_{i,j=1...n}$ appelée matrice de b dans la base \mathcal{B} . On rappelle que $b \mapsto \Phi_{\mathcal{B}}(b)$ est un isomorphisme entre l'espace vectoriel des formes bilinéaires symétriques sur V et celui des matrices symétriques carrées de taille n.
 - (a) Démontrer qu'une forme quadratique q sur V est non dégénérée si et seulement si le déterminant $\det (\Phi_{\mathcal{B}}(\tilde{q}))$ est non nul.
 - (b) Quelle est la matrice de $\langle a_1, \dots, a_n \rangle$ dans la base canonique de \mathbb{K}^n ? En déduire que $\langle a_1, \dots, a_n \rangle \in \mathcal{Q}(\mathbb{K}^n)$.
- 4. Soit $q \in \mathcal{Q}(V)$ une forme quadratique non dégénérée sur V.
 - (a) Soit V' un \mathbb{K} -espace vectoriel de dimension finie et q' une forme quadratique sur V'. Démontrer que si q et q' sont isométriques, alors q' est dans $\mathcal{Q}(V')$, c'est-à-dire non dégénérée.
 - (b) Pour $x \neq 0$, on note $\{x\}^{\perp} := \{y \in V \mid \widetilde{q}(x,y) = 0\}$. Montrer que $\{x\}^{\perp}$ est un sous-espace vectoriel de V de dimension n-1.
 - (c) A quelle condition sur x le sous-espace $\{x\}^{\perp}$ est-il un supplémentaire de la droite $\mathbb{K}x$ dans V?
- 5. Soient $q \in \mathcal{Q}(V)$ et $q' \in \mathcal{Q}(V')$ où V' est un \mathbb{K} -espace vectoriel de dimension finie. Démontrer que O(q) est un sous-groupe de $\mathrm{GL}(V)$ et que si $q \cong q'$, alors O(q) et O(q') sont deux groupes isomorphes.