Centrale 1985, Math. I, Option M

Notations.

On note V le \mathbb{R} -espace vectoriel des applications continues f de]0,1] dans \mathbb{R} , intégrables sur]0,1]. On note W le \mathbb{R} -espace vectoriel des applications continues f de]0,1] dans \mathbb{R} , telles que f^2 soit intégrable sur]0,1].

Partie I: Un espace préhilbertien...

- 1°) Montrer que W est un sous-espace vectoriel de V.
- **2°)** Montrer que si l'on pose, pour f et g appartenant à W, $\langle f|g\rangle = \int_0^1 f(x)g(x) \, \mathrm{d}x$, on définit un produit scalaire préhilbertien; W sera désormais muni de cette structure.
- 3°) Étudier l'appartenance à V et l'appartenance à W des restrictions à [0,1] des fonctions suivantes :

$$f_1: x \mapsto \ln x$$

$$f_2: x \mapsto x^{-\alpha} \quad (\alpha > 0)$$

$$f_3: x \mapsto \frac{1}{x(1 - \ln x)^{\alpha}} \quad (\alpha > 0)$$

Partie II: ... et un opérateur autoadjoint.

1°) Soit f un élément de V. On pose, pour tout $x \in [0,1]$:

$$F(x) = \ln x \int_0^x f(t) dt + \int_x^1 f(t) \ln t dt$$
.

- a) Montrer que F(x) existe pour tout $x \in]0,1]$.
- **b**) Montrer que F est de classe C^2 sur [0,1].
- **c**) Établir la relation, valable pour tout $x \in]0,1]$:

$$xF''(x) + F'(x) = f(x).$$

- 2°) Soit f un élément de V et F définie comme ci-dessus.
- a) Quelle est la valeur de F(1)?
- **b**) Quelle est la limite de xF'(x) lorsque x tend vers 0?
- c) Donner un exemple d'élément f de V tel que F ne soit pas bornée; on pourra utiliser une fonction du type $f(x) = \frac{1}{x(1-\ln x)^{\alpha}}$ avec α convenablement choisi.
- 3°) f désigne toujours une fonction de V et F la fonction définie au début de cette partie.
- a) Établir l'existence d'une constante A > 0 telle que, pour tout $x \in]0,1]$, l'on ait $|F'(x)| \leq \frac{A}{x}$.
- **b**) Établir que $F \in W$.
- 4°) À tout élément f de V on associe ainsi F qui appartient aussi à V, ce qui définit donc une application T de V dans V, manifestement linéaire.

T est-elle injective?

- ${f 5^o}$) On suppose ici que f appartient à W; T(f) a-t-elle une limite en 0? T(f) est-elle bornée? On pourra établir: $\forall x \in]0,1], \ |F'(x)| \leqslant \sqrt{\frac{< f|f>}{x}},$ avec toujours F=T(f).
- 6°) a) Montrer que la restriction de T à W est un endomorphisme autoadjoint de W.
- b) Montrer que la restriction de -T à W est un endomorphisme autoadjoint positif de W. Est-il défini positif?

Partie III : Éléments propres de T.

- $\mathbf{1}^{\circ}$) Démontrer que les valeurs propres de T, s'il en existe, sont strictement négatives et que les vecteurs propres de T appartiennent en fait à W.
- **2°)** Soit λ un nombre réel strictement positif. Montrer que, si f est vecteur propre de T pour la valeur propre $-\lambda$, alors l'application de $]0, \frac{1}{\lambda}]$ dans $\mathbb R$ qui à x associe $f(\lambda x)$ est, dans son intervalle de définition, solution de l'équation différentielle

$$(E) xy'' + y' + y = 0.$$

- **3°)** Montrer que (E) admet une solution h développable en série entière et une seule, de la forme $h(x) = \sum_{n=0}^{\infty} a_n x^n$, avec $a_0 = 1$, et de rayon de convergence R > 0. On donnera l'expression de a_n et la valeur de R.
- **4°)** a) Établir qu'il existe r_1 réel tel que $h(r_1) = 0$ et que, pour tout $x < r_1$, h(x) > 0. On pourra commencer par étudier le signe de h'(x) sur [0, 2].
- **b**) Justifier de façon rigoureuse l'encadrement $1, 4 < r_1 < 1, 5$.
- ${f 5}^{f o}$) a) Soient b et c deux réels tels que $0 < b < c \leqslant r_1$. Soit y une application de]0,c[dans \mathbb{R} , solution de (E); établir à l'aide de la fonction $z=\frac{y}{b}$ l'existence de deux constantes A et B telles que

$$\forall x \in]0, c[, \quad y(x) = Ah(x) + Bh(x) \int_{b}^{x} \frac{\mathrm{d}t}{th(t)^{2}}.$$

- **b**) Étudier la limite de y(x) quand x tend vers 0.
- 6°) Déduire de ce qui précède que, si f est vecteur propre de T pour la valeur propre $-\lambda$, alors il existe μ réel tel que $\forall x \in]0,1], \quad f(x) = \mu h\left(\frac{x}{\lambda}\right).$
- 7°) Soit inversement un nombre réel $\lambda > 0$; donner une condition nécessaire et suffisante pour que l'application de [0,1]dans \mathbb{R} qui à x associe $h(\frac{x}{\lambda})$ soit vecteur propre de T. Quel lien existe-t-il entre les zéros de h et les valeurs propres de T?
- 8°) Établir qu'à chaque valeur propre de T correspond un sous-espace propre de dimension 1 et que ces sous-espaces propres sont deux à deux orthogonaux pour la structure préhilbertienne de W.

Partie IV: La fonction de Bessel et ses zéros.

- 1°) Soit y une solution de E dans un intervalle I inclus dans $]0,+\infty[$. Mettre sous une forme aussi simple que possible les dérivées premières des fonctions qui à x associent respectivement $xy'(x)^2 + y(x)^2$ et $x^2y'(x)^2 + xy(x)^2$.
- **2°)** a) Montrer que, lorsque x tend vers $+\infty$, $xh'(x)^2 + h(x)^2$ tend vers une limite $L \ge 0$.
- b) En déduire que h est bornée dans \mathbb{R}_+ et que h' tend vers 0 lorsque x tend vers $+\infty$.
- 3°) a) Établir l'existence des quatre intégrales suivantes, où a désigne un réel strictement positif quelconque (a priori comme intégrales impropres):

$$\int_{a}^{\infty} h'(x)^{2} dx, \quad \int_{a}^{\infty} h(x)h''(x) dx,$$
$$\int_{a}^{\infty} \frac{h(x)h'(x)}{x} dx, \quad \int_{a}^{\infty} \frac{h(x)^{2}}{x} dx$$

- **b**) En déduire que L=0 (on pourra raisonner par l'absurde).
- c) Montrer que les fonctions h'^2 , hh'', $x \mapsto \frac{h(x)h'(x)}{x}$ et $x \mapsto \frac{h(x)^2}{x}$ sont intégrables sur $[a, +\infty[$. **4°)** On suppose, dans cette seule question, qu'il existe r > 0 tel que h(r) = 0 et que, pour tout $x \ge r$, l'on a $h(r) \ge 0$.
- a) Que dire du sens de variation de xh'(x) pour $x \ge r$?
- b) On suppose que l'on connait une valeur c > r telle que h'(c) < 0; trouver une fonction majorant h sur $[c, +\infty]$ et en tirer une contradiction.
- c) En déduire que h est croissante sur $[r, +\infty[$. Est-ce possible?
- 5°) Montrer que h admet une infinité de zéros.
- 6°) Soit r un zéro de h.
- a) Démontrer l'existence d'au moins un zéro de h' sur $[r, +\infty[$.
- **b**) Soit q un tel zéro de h'. Établir que

$$\forall x > r$$
, $|h'(x)| \le |h'(r)|$.

En déduire une majoration de $\left| \int_{r}^{q} h(x) dx \right|$.

c) À l'aide de l'intégrale précédente, établir l'inégalité

$$q \geqslant r + \sqrt{2r}$$
.

- 7°) a) Démontrer que, pour tout entier n > 0, l'intervalle [n, n+1] contient au plus un zéro de h.
- b) Établir que l'on peut ranger les zéros de h en une suite strictement croissante (r_n) , de limite infinie, et telle que

$$\lim r_{n+1} - r_n = +\infty.$$

- **c**) Trouver une constante K > 0 telle que pour tout entier $n \ge 1$ on ait $r_n \ge Kn^2$.
- 8°) Donner l'allure de la courbe représentative de h. On établira que, dans chaque intervalle $[r_n, r_{n+1}]$, h' s'annule une fois et une seule et que la suite qui à n associe $M_n = \text{Max}\{|h(x)| / x \in [r_n, r_{n+1}]\}$ est décroissante et tend vers 0.